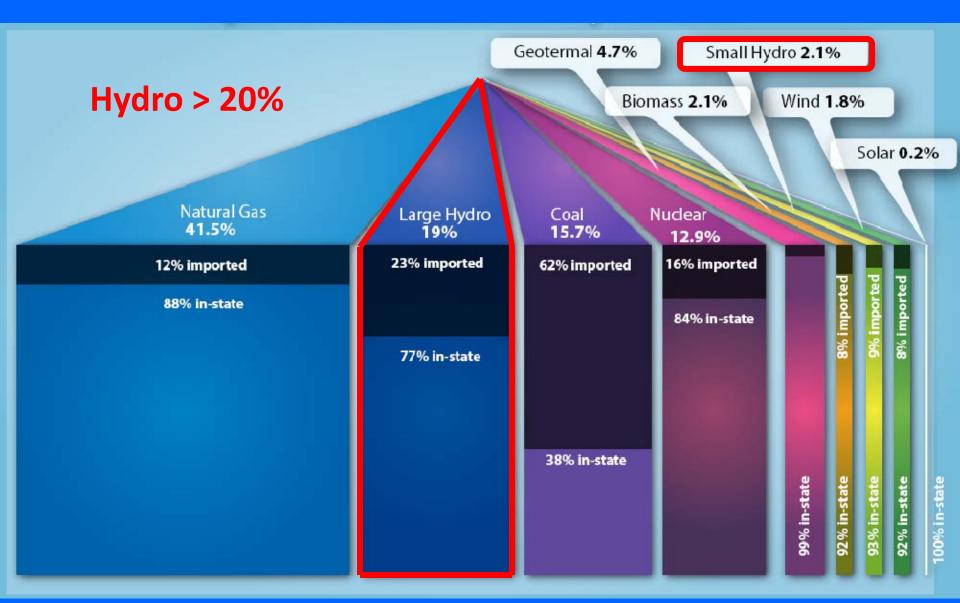
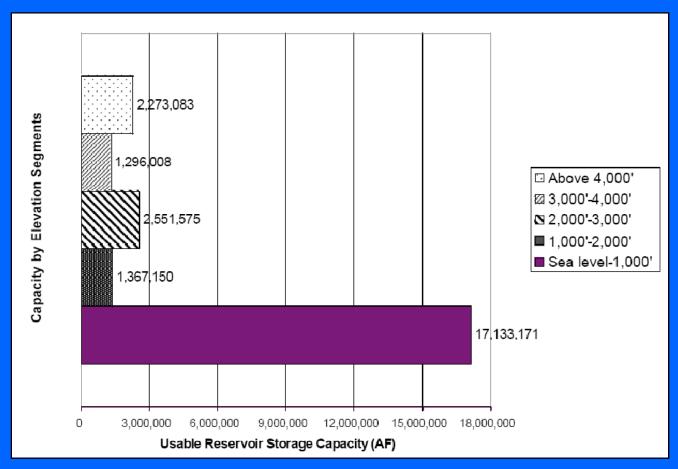
Impacts of Climate Change on Hydropower Generation in California: Different Perspectives from High and Low Elevation Systems

Professor John A. Dracup
Department of Civil and Environmental Engineering.
University of California, Berkeley

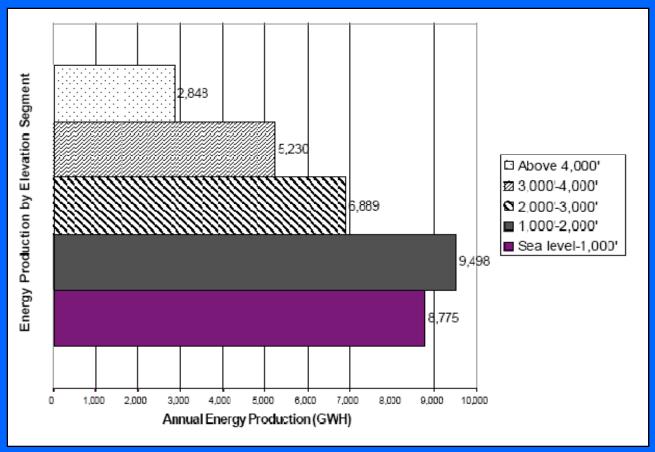

Agenda

- Introduction
- High elevation case studies: Upper American River Project and Big Creek
- Low elevation case study: Merced Irrigation District


Agenda

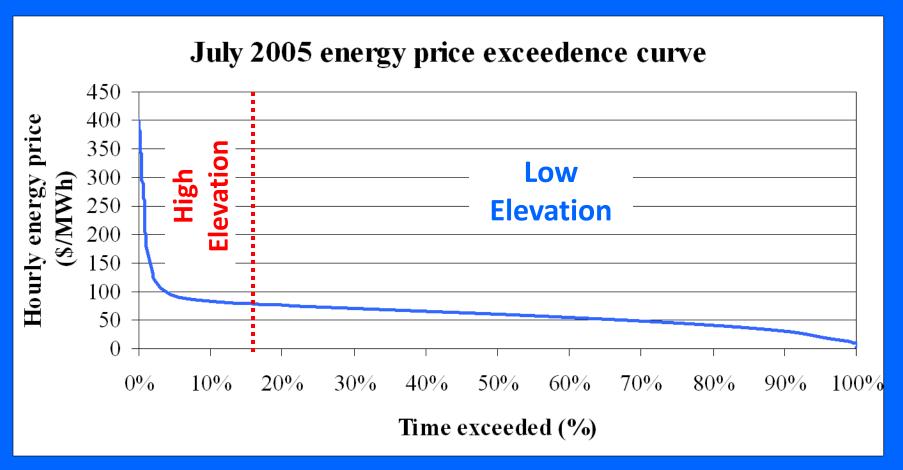
- Introduction
- High elevation case studies: Upper American River Project and Big Creek
- Low elevation case study: Merced Irrigation District

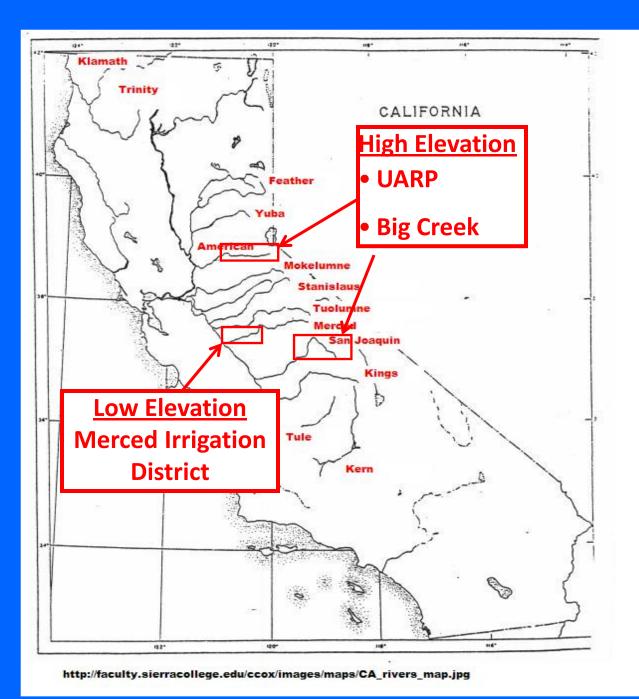
California's Electricity Mix - 2006


Difference between high and low elevation hydropower systems

Usable Reservoir Capacity by Elevation Segments

Aspen Environmental and M-Cubed, 2005


Difference between high and low elevation hydropower systems


Average Annual Energy Production by Elevation Segments

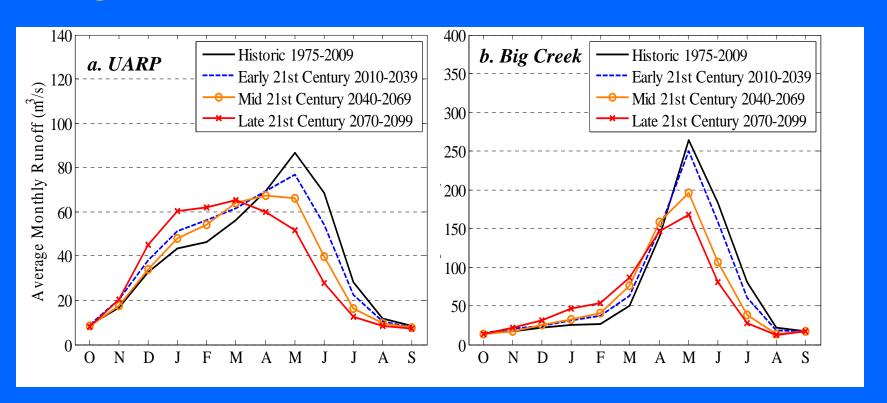
Aspen Environmental and M-Cubed, 2005

Difference between high and low elevation hydropower systems

Three case studies

Agenda

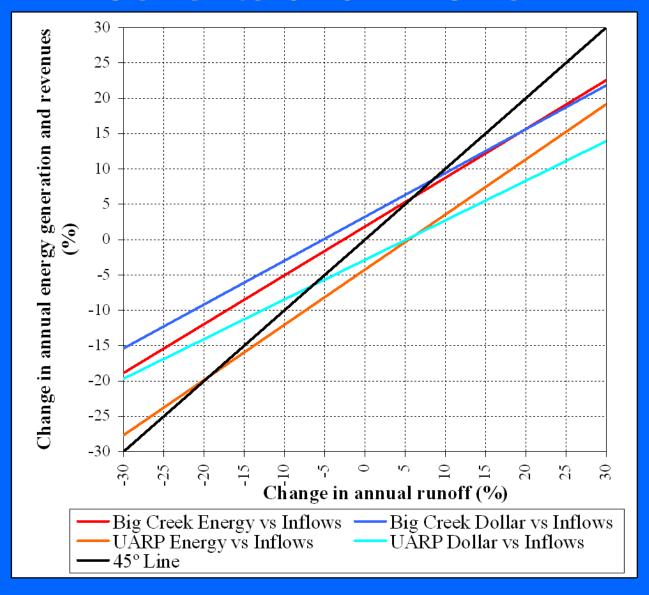
- Introduction
- High elevation case studies: Upper American River Project and Big Creek
- Low elevation case study: Merced Irrigation District


High elevation hydropower: Two case studies

	System			
Variable	UARP	Big Creek		
Operated	SMUD	SCE		
Location	Upper American River	Upper San Joaquin River		
Range in elevations (ft)	1,850-6,410	1,403-7,643		
Storage/Inflows	0.42	0.31		

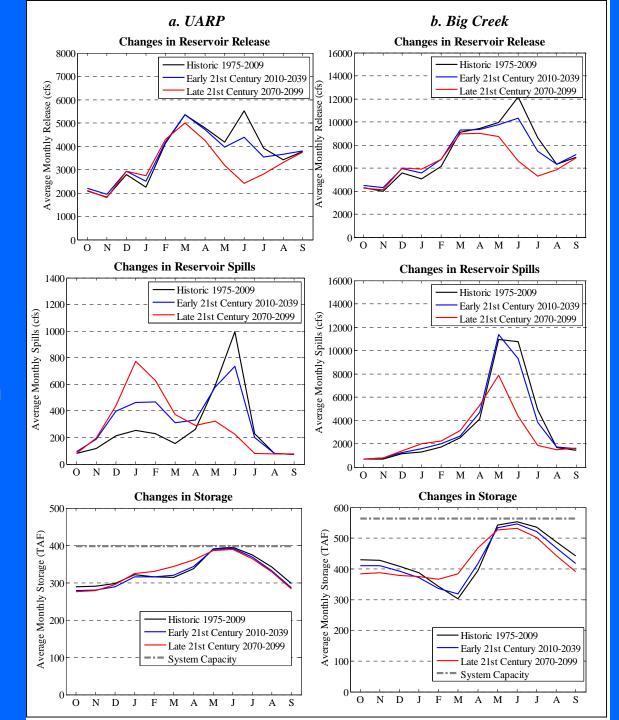
- Operations simulated using LP under historic and climate change hydrologic conditions
- Objective function: energy generation revenues and storage. Calibrated to reproduce historic operations.

Climate change hydrology Inflows to UARP and Big Creek


- In average annual runoff is reduced (especially for Big Creek) but with large uncertainty
- Earlier center of mass (especially for UARP)
- Larger floods in winter

Future Operations

	po	Sy	System		
Variable	Period	UARP System	Big Creek System		
Energy Generation in GWh/year	1960-2010	1,976	3,580		
	2070-2099	-12.20%	-10.40%		
Energy Generation revenues in mill \$/year	1960-2010	130	212		
	2070-2099	-8.50%	-7.80%		
Average August Power Capacity in MW	1960-2010	654	1,034		
	2070-2099	-0.10%	-0.20%		
Average Spills in cfs (m³/s)	1960-2010	269 (8)	3,447 (98)		
	2070-2099	10.80%	-21.80%		


Relation between change in benefits and inflows

Reduction in release in summer

 Increase in spills in winter in UARP;
 Reduction of spills in Big Creek

 Summer storage mostly unaffected

Conclusions: High Elevation Hydropower

- Hydropower generation drops under most of climate change scenarios as a consequence drier hydrologic conditions (especially Big Creek) and increased spills (especially UARP)
- Impact due to earlier inflows associated with increase in temperature is more evident in lower elevation systems (UARP)
- Under most circumstances these high elevation systems are able to keep their power capacity close to maximum levels during late spring and summer months

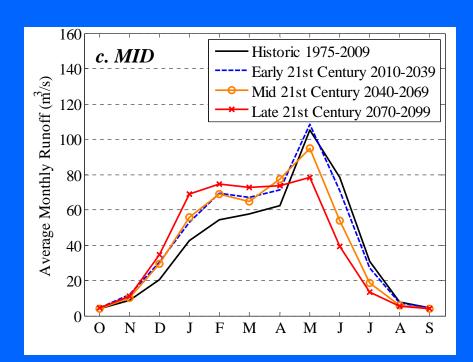
Agenda

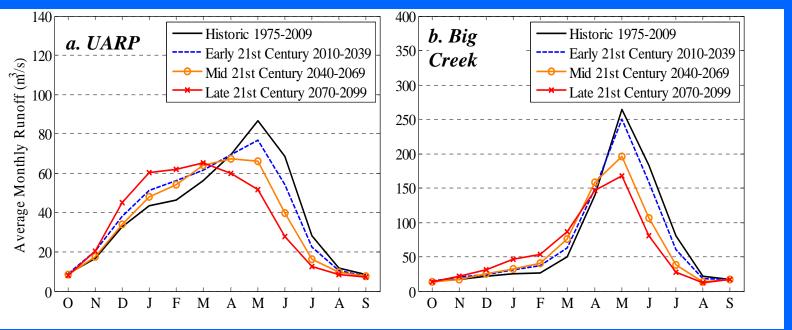
- Introduction
- High elevation case studies: Upper American River Project and Big Creek
- Low elevation case study: Merced Irrigation District

Low elevation hydropower

		System	
Variable	UARP	Big Creek	MID
Operated	SMUD	SCE	MID-PG&E
Location	Upper American River	Upper San Joaquin River	Middle Merced River
Range in elevations (ft)	1,850-6,410	1,403-7,643	879
Storage/Inflows	0.42	0.31	1.08

- Operations simulated using SDP (Vicuna et al., 2008, 2007 CCCC conference) under historic and climate change hydrologic conditions
- •Objective function: energy generation revenues (variable head), water supply. Includes flood control.


Research questions


- How will climate change affect energy supply and agricultural benefits?
- What policies available to mitigate climate impacts?
 - Conjunctive use
 - New or modified Infrastructure
 - Reservoir re-operation (e.g. flood control rules)

Climate change hydrology

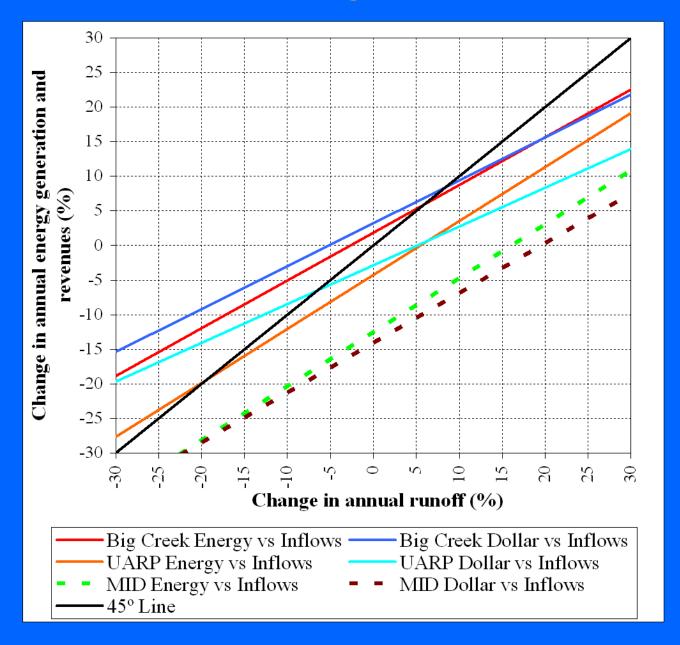
Impacts similar to UARP

- Reduced runoff (≈11%)
- Earlier center of mass
- Larger floods in winter

Results

	po	System		po	System
Variable	Period	MID	Variable	Period	MID
Energy Generation in GWh/year	2011-2040	302.8	Groundwater Pumping in GWh/year	2011-2040	79.8
	2070-2099	-21.3 %		2070-2099	46.90%
rgy :ation ues in //year	2011-2040	8.4	Groundwater Pumping Costs in mill \$/year	2011-2040	4.8
Energy Generation revenues in mill \$/year	2070-2099	-22.1 %	Groundwat Pumping Costs in mi	2070-2099	46.90%
Average Spills in cfs (m^3/s)	2011-2040	137.4 (3.9)	Agriculture Benefits in mill \$/year	2011-2040	24.2
	2070-2099	53.60%		2070-2099	-2.8 %

Unlike High Elevation system


- •Both loss in generation and revenues is larger than loss in inflows (-11%)
- Loss in hydropower revenues larger than loss in energy generation
- Large spills

Results

	po	System		po	System
Variable	Period	MID	Variable	Period	MID
Energy Generation in GWh/year	2011-2040	302.8	Groundwater Pumping in GWh/year	2011-2040	79.8
	2070-2099	-21.3 %	Groun Pump GWh	2070-2099	46.90%
Energy Generation revenues in mill \$/year	2011-2040	8.4	Groundwater Pumping Costs in mill \$/year	2011-2040	4.8
	2070-2099	-22.1 %		2070-2099	46.90%
Average Spills in cfs (m^3/s)	2011-2040	137.4 (3.9)	Agriculture Benefits in mill \$/year	2011-2040	24.2
	2070-2099	53.60%	Agric Bene mill §	2070-2099	-2.8 %

- Agriculture benefits are mostly unaltered
- •Large increase in pumping costs (a further reduction in net energy generation)

Relation between change in benefits and inflows

Adaptation strategy

Conjunctive use

Scenario			Scenario				
	Conjunctive		•			-	Conjunctive
Variable	Base	use	Variable	Base	use		
Energy Generation	-21.30%	-20.70%	Groundwater Pumping	46.90%	24.50%		
Energy Generation revenues	-22.10%	-21.50%	Groundwater Pumping Costs	46.90%	24.50%		
Average Spills	53.60%	50.20%	Agriculture Benefits	-2.80 %	-5.80%		

Conclusions: Low Elevation Hydropower

- Hydropower generation drops and groundwater pumping increases under most of climate change scenarios as a consequence drier hydrologic conditions and increased spills.
- Deficit in net energy generation for the basin.
- Agriculture benefits are mostly not affected
- System complexity leaves less room for adaptation. Although some potential alternatives arise (i.e. conjunctive use).

Acknowledgments

- Sebastian Vicuna, UC Berkeley
- Larry Dale, LBNL
- CEC-PIER funded project No MR-07-03A
- Dudley McFadden, Scott Flake, SMUD
- Kevin Cini, Tom Watson, SCE
- Hicham Eltal, Ted Selb, MID
- Michael Hanemann, UC Berkeley
- Edwin P. Maurer Santa Clara U.
- Jay Lund, UC Davis
- Joe O'Hagan, Guido Franco, CEC
- Tariq Kadir, Charlie Brush and Can Dogrul, DWR

Thank you!

dracup@ce.berkeley.edu svicuna@berkeley.edu LLDale@lbl.gov